z-logo
open-access-imgOpen Access
LIM Protein KyoT2 Negatively Regulates Transcription by Association with the RBP-J DNA-Binding Protein
Author(s) -
Yoshihito Taniguchi,
Takahisa Furukawa,
Tin Tun,
Hua Han,
Tasuku Honjo
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.1.644
Subject(s) - biology , rna splicing , microbiology and biotechnology , promoter , transcription (linguistics) , alternative splicing , exon , gene , gene expression , genetics , rna , linguistics , philosophy
The RBP-J/Su(H) DNA-binding protein plays a key role in transcriptional regulation by targeting Epstein-Barr virus nuclear antigen 2 (EBNA2) and the intracellular portions of Notch receptors to specific promoters. Using the yeast two-hybrid system, we isolated a LIM-only protein, KyoT, which physically interacts with RBP-J. Differential splicing gave rise to two transcripts of theKyoT gene, KyoT1 and KyoT2, that encoded proteins with four and two LIM domains, respectively. With differential splicing resulting in deletion of an exon, KyoT2 lacked two LIM domains from the C terminus and had a frameshift in the last exon, creating the RBP-J-binding region in the C terminus. KyoT1 had a negligible level of interaction with RBP-J. Strong expression of KyoT mRNAs was detected in skeletal muscle and lung, with a predominance of KyoT1 mRNA. When expressed in F9 embryonal carcinoma cells, KyoT1 and KyoT2 were localized in the cytoplasm and the nucleus, respectively. The binding site of KyoT2 on RBP-J overlaps those of EBNA2 and Notch1 but is distinct from that of Hairless, the negative regulator of RBP-J-mediated transcription inDrosophila . KyoT2 but not KyoT1 repressed the RBP-J-mediated transcriptional activation by EBNA2 and Notch1 by competing with them for binding to RBP-J and by dislocating RBP-J from DNA. KyoT2 is a novel negative regulatory molecule for RBP-J-mediated transcription in mammalian systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here