WAF1 Retards S-Phase Progression Primarily by Inhibition of Cyclin-Dependent Kinases
Author(s) -
Vasily Ogryzko,
Patricia Wong,
Bruce H. Howard
Publication year - 1997
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.17.8.4877
Subject(s) - biology , cyclin dependent kinase , cyclin a , cyclin a2 , cyclin , microbiology and biotechnology , cyclin d , proliferating cell nuclear antigen , cyclin b , kinase , cyclin e , cyclin dependent kinase complex , cell cycle , cancer research , cell growth , cyclin dependent kinase 2 , biochemistry , protein kinase a , cell
The p21(WAF1/CIP1/sdi1) gene product (WAF1) inhibits DNA replication in vitro (J. Chen, P. Jackson, M. Kirschner, and A. Dutta, Nature 374:386-388, 1995; S. Waga, G. Hannon, D. Beach, and B. Stillman, Nature 369:574-578, 1994), but in vivo studies on the antiproliferative activity of WAF1 have not resolved G1-phase arrest from potential inhibition of S-phase progression. Here, we demonstrate that elevated WAF1 expression can retard replicative DNA synthesis in vivo. The WAF1-mediated inhibitory effect could be antagonized by cyclin A, cyclin E, or the simian virus 40 small-t antigen with no decrease in the levels of WAF1 protein in transfected cells. Proliferating-cell nuclear antigen (PCNA) overexpression was neither necessary nor sufficient to antagonize WAF1 action. Expression of the N-terminal domain of WAF1, responsible for cyclin-dependent kinase (CDK) interaction, had the same effect as full-length WAF1, while the PCNA binding C terminus exhibited modest activity. We conclude that S-phase progression in mammalian cells is dependent on continuing cyclin and CDK activity and that WAF1 affects S phase primarily through cyclin- and CDK-dependent pathways.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom