z-logo
open-access-imgOpen Access
Efficient Repression of Endogenous Major Histocompatibility Complex Class II Expression through Dominant Negative CIITA Mutants Isolated by a Functional Selection Strategy
Author(s) -
Séverine Bontron,
Catherine Ucla,
Bernard Mach,
Viktor Steimle
Publication year - 1997
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.17.8.4249
Subject(s) - ciita , biology , major histocompatibility complex , psychological repression , mhc class ii , mutant , cd74 , genetics , microbiology and biotechnology , gene expression , gene
Major histocompatibility complex class II (MHC-II) molecules present peptide antigens to CD4-positive T cells and are of critical importance for the immune response. The MHC-II transactivator CIITA is essential for all aspects of MHC-II gene expression examined so far and thus constitutes a master regulator of MHC-II expression. In this study, we generated and analyzed mutant CIITA molecules which are able to suppress endogenous MHC-II expression in a dominant negative manner for both constitutive and inducible MHC-II expression. Dominant negative CIITA mutants were generated via specific restriction sites and by functional selection from a library of random N-terminal CIITA deletions. This functional selection strategy was very effective, leading to strong dominant negative CIITA mutants in which the N-terminal acidic and proline/serine/threonine-rich regions were completely deleted. Dominant negative activity is dependent on an intact C terminus. Efficient repression of endogenous MHC-II mRNA levels was quantified by RNase protection analysis. The quantitative effects of various dominant negative CIITA mutants on mRNA expression levels of the different MHC-II isotypes are very similar. The optimized dominant negative CIITA mutants isolated by functional selection should be useful for in vivo repression of MHC-II expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom