z-logo
open-access-imgOpen Access
The Ability of C/EBPβ but Not C/EBPα To Synergize with an Sp1 Protein Is Specified by the Leucine Zipper and Activation Domain
Author(s) -
Y H Lee,
Simon C. Williams,
Mark Baer,
Esta Sterneck,
Frank J. Gonzalez,
Peter F. Johnson
Publication year - 1997
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.17.4.2038
Subject(s) - leucine zipper , ccaat enhancer binding proteins , transactivation , biology , transcription factor , microbiology and biotechnology , promoter , bzip domain , basic helix loop helix leucine zipper transcription factors , dna binding protein , gene , transcription (linguistics) , enhancer , binding site , gene expression , genetics , linguistics , philosophy
The rat CYP2D5 P-450 gene is activated in the liver during postnatal development. We previously showed that liver-specific transcription of the CYP2D5 gene is dictated by a proximal promoter element, termed 2D5, that is composed of a binding site for Sp1 or a related factor, and an adjacent cryptic C/EBP (CCAAT/enhancer-binding protein) site. Despite the fact that both C/EBP alpha and C/EBP beta are expressed abundantly in liver, only C/EBP beta is capable of stimulating the 2D5 promoter in HepG2 hepatocarcinoma cells. In addition, activation of the 2D5 promoter by C/EBP beta is completely dependent on the presence of the Sp1 site. Domain switch experiments reveal that C/EBP beta proteins containing either the leucine zipper or the activation domain of C/EBP alpha are unable to stimulate the 2D5 promoter yet are fully capable of transactivating an artificial promoter bearing a high-affinity C/EBP site. Thus, the leucine zipper and the activation domain of C/EBP beta are absolutely required to support transactivation of the 2D5 promoter. Using Drosophila cells that lack endogenous Sp1 activity, we show that the serine/threonine- and glutamine-rich activation domains A and B of Sp1 are required for efficient cooperatively with C/EBP beta. Furthermore, analysis of c/ebp beta-deficient mice shows that mutant animals are defective in expression of a murine CYP2D5 homolog in hepatic cells, confirming the selective ability of C/EBP beta to activate this liver-specific P-450 gene in vivo. Our findings illustrate that two members of a transcription factor family can achieve distinct target gene specificities through differential interactions with a cooperating Sp1 protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here