z-logo
open-access-imgOpen Access
Developmental Silencing of the Embryonic ζ-Globin Gene: Concerted Action of the Promoter and the 3′-Flanking Region Combined with Stage-Specific Silencing by the Transcribed Segment
Author(s) -
Stephen A. Liebhaber,
Zhibin Wang,
F E Cash,
Bob Monks,
Janice Russell
Publication year - 1996
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.16.6.2637
Subject(s) - gene silencing , biology , gene , genetics , globin , microbiology and biotechnology , regulation of gene expression , locus control region , promoter , gene expression
Globin gene switching is a well-described model of eucaryotic developmental control. In the case of the human alpha-globin gene cluster, migration of erythropoietic activity from the embryonic yolk sac to the fetal liver is parallaled by the zeta-globin gene silencing and enhanced expression of the alpha-globin genes. To map critical cis determinants of this switch, the human zeta-globin gene, the alpha-globin gene, and chimeric recombinants were introduced into the mouse genome. Consistent with previous studies, expression of the individual alpha- and zeta-globin transgenes was found to be developmentally appropriate. Contrary to current models, however, the alpha- and zeta-globin gene promoters were not sufficient to establish this control. Instead, full silencing of the zeta-globin gene required the combined activities of this promoter, transcribed region, and 3'-flanking sequences. Individually, the silencing activities of the zeta-globin gene promoter and 3'-flanking region were minimal but increased markedly when both regions were present. The zeta-globin transcribed region appeared to contribute to gene silencing by a mechanism specifically activated in definitive erythroblasts in the fetal liver. These data demonstrate that a complex set of controls, requiring at least three determinants and involving at least two independent mechanisms, is necessary for full developmental silencing of the human zeta-globin gene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom