z-logo
open-access-imgOpen Access
A Composite Element Binding the Vitamin D Receptor, Retinoid X Receptor α, and a Member of the CTF/NF-1 Family of Transcription Factors Mediates the Vitamin D Responsiveness of the c-fos Promoter
Author(s) -
G. Antonio Candeliere,
Peter W. Jurutka,
Mark R. Haussler,
René StArnaud
Publication year - 1996
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.16.2.584
Subject(s) - biology , calcitriol receptor , transcription factor , microbiology and biotechnology , response element , caat box , nuclear receptor , upstream activating sequence , retinoid x receptor , transcription (linguistics) , promoter , receptor , gene , gene expression , genetics , enhancer , linguistics , philosophy
The hormonal form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 [1,25- (OH)2D3], transiently stimulates the transcription of the c-fos proto-oncogene in osteoblastic cells. We have identified and characterized a vitamin D response element (VDRE) in the promoter of c-fos. The 1,25-(OH)2D3-responsive region was delineated between residues -178 and -144 upstream of the c-fos transcription start site. A mutation that inhibited binding to the sequence concomitantly abolished 1,25-(OH)2D3-induced transcriptional responsiveness; similarly, cloning to the site upstream of a heterologous promoter conferred copy-number-dependent vitamin D responsiveness to a reporter gene, demonstrating that we have identified a functional response element. The structure of the c-fos VDRE was found to be unusual. Mutational analysis revealed that the c-fos VDRE does not conform to the direct repeat configuration in which hexameric core-binding sites are spaced by a few nucleotide residues. In contrast, the entire 36-bp sequence was essential for binding. We identified the vitamin D receptor and the retinoid X receptor alpha as components of the complex that bound the c-fos VDRE. However, our results also show that a putative CCAAT-binding transcription factor/nuclear factor 1 (CTF/NF-1) family member bound the response element in conjunction with the nuclear hormone receptors. The expression of this CTF/NF-1 family member appeared restricted to bone cells. These data hint at new molecular mechanisms of action for vitamin D.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom