z-logo
open-access-imgOpen Access
Identification of Positive and Negative Splicing Regulatory Elements within the Terminal tat-rev Exon of Human Immunodeficiency Virus Type 1
Author(s) -
Alfredo Staffa,
Andalan Cochrane
Publication year - 1995
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.15.8.4597
Subject(s) - biology , exon , rna splicing , long terminal repeat , genetics , virology , identification (biology) , alternative splicing , terminal (telecommunication) , human immunodeficiency virus (hiv) , gene , genome , rna , telecommunications , botany , computer science
The requirement of human immunodeficiency virus type 1 to generate numerous proteins from a single primary transcript is met largely by the use of suboptimal splicing to generate over 30 mRNAs. To ensure that appropriate quantities of each protein are produced, there must be a signal(s) that controls the efficiency with which any particular splice site in the RNA is used. To identify this control element(s) and to understand how it operates to generate the splicing pattern observed, we have initially focused on the control of splicing of the tat-rev intron, which spans the majority of the env open reading frame. Previous analysis indicated that a suboptimal branchpoint and polypyridimine tract in this intron contribute to its suboptimal splicing (A. Staffa and A. Cochrane, J. Virol. 68:3071-3079, 1994). In this report, we identify two additional elements within the 3'-terminal exon, an exon-splicing enhancer (ESE) and an exon splicing silencer (ESS), that modulate the overall efficiency with which the 3' tat-rev splice site is utilized. Both elements are capable of functioning independently of one another. Furthermore, while both the ESE and ESS can function in a heterologous context, the function of the ESS is extremely sensitive to the sequence context into which it is placed. In conclusion, it would appear that the presence of a suboptimal branchpoint and a polypyrimidine tract as well as the ESE and ESS operate together to yield the balanced splicing of the tat-rev intron observed in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here