Repression of Platelet-Derived Growth Factor β-Receptor Expression by Mitogenic Growth Factors and Transforming Oncogenes in Murine 3T3 Fibroblasts
Author(s) -
Cyrus Vaziri,
Douglas V. Faller
Publication year - 1995
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.15.3.1244
Subject(s) - platelet derived growth factor receptor , biology , platelet derived growth factor , growth factor , cell growth , cell culture , psychological repression , fibroblast , microbiology and biotechnology , receptor , 3t3 cells , endocrinology , gene expression , transfection , biochemistry , genetics , gene
Platelet-derived growth factor BB (PDGF-BB) is an important extracellular factor for regulating the G0-S phase transition of murine BALB/c-3T3 fibroblasts. We have investigated the expression of the PDGF beta receptor (PDGF beta R) in these cells. We show that the state of growth arrest in G0, resulting from serum deprivation, is associated with increased expression of the PDGF beta R. When the growth-arrested fibroblasts are stimulated to reenter the cell cycle by the mitogenic action of serum or certain specific combinations of growth factors, PDGF beta R mRNA levels and cell surface PDGF-BB-binding sites are markedly downregualted. Oncogene-transformed 3T3 cell lines, which fail to undergo growth arrest following prolonged serum deprivation, express constitutively low levels of the PDGF beta R mRNA and possess greatly reduced numbers of cell surface PDGF receptors, as determined by PDGF-BB binding and Western blotting (immunoblotting). Nuclear runoff assays indicate the mechanism of repression of PDGF beta R expression to be, at least in large part, transcriptional. These data indicate that expression of the PDGF beta R is regulated in a growth state-dependent manner in fibroblasts and suggest that this may provide a means by which cells can modulate their responsiveness to the actions of PDGF.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom