
Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system.
Author(s) -
Hisashi Harada,
Ei Takahashi,
Susumu Itoh,
Kenji Harada,
Tada-aki Hori,
Tadatsugu Taniguchi
Publication year - 1994
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.14.2.1500
Subject(s) - biology , interferon regulatory factors , promoter , gene , irf1 , genetics , regulatory sequence , regulation of gene expression , transcription factor , tbx1 , consensus sequence , intron , exon , dna binding site , enhancer , microbiology and biotechnology , gene expression , peptide sequence
Interferon regulatory factor 1 (IRF-1) and IRF-2 are structurally similar DNA-binding factors which were originally identified as regulators of the type I interferon (IFN) system; the former functions as a transcriptional activator, and the latter represses IRF-1 function by competing for the same cis elements. More recent studies have revealed new roles of the two factors in the regulation of cell growth; IRF-1 and IRF-2 manifest antioncogenic and oncogenic activities, respectively. In this study, we determined the structures and chromosomal locations of the human IRF-1 and IRF-2 genes and further characterized the promoters of the respective genes. Comparison of exon-intron organization of the two genes revealed a common evolutionary structure, notably within the exons encoding the N-terminal portions of the two factors. We confirmed the chromosomal mapping of the human IRF-1 gene to 5q31.1 and newly assigned the IRF-2 gene to 4q35.1, using fluorescence in situ hybridization. The 5' regulatory regions of both genes contain highly GC-rich sequences and consensus binding sequences for several known transcription factors, including NF-kappa B. Interestingly, one IRF binding site was found within the IRF-2 promoter, and expression of the IRF-2 gene was affected by both transient and stable IRF-1 expression. In addition, one potential IFN-gamma-activated sequence was found within the IRF-1 promoter. Thus, these results may shed light on the complex gene network involved in regulation of the IFN system.