z-logo
open-access-imgOpen Access
Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding.
Author(s) -
John Sap,
Yongping Jiang,
D R Friedlander,
Martin Grumet,
Joseph Schlessinger
Publication year - 1994
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.14.1.1
Subject(s) - protein tyrosine phosphatase , biology , microbiology and biotechnology , extracellular , fibronectin , tyrosine phosphorylation , tyrosine , phosphorylation , phosphatase , biochemistry , extracellular matrix
Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y.-P. Jiang, H. Wang, P. D'Eustachio, J.M. Musacchio, J. Schlessinger, and J. Sap, Mol. Cell. Biol. 13:2942-2951, 1993). We report here that R-PTP-kappa can mediate homophilic intercellular interaction. Inducible expression of the R-PTP-kappa protein in heterologous cells results in formation of stable cellular aggregates strictly consisting of R-PTP-kappa-expressing cells. Moreover, the purified extracellular domain of R-PTP-kappa functions as a substrate for adhesion by cells expressing R-PTP-kappa and induces aggregation of coated synthetic beads. R-PTP-kappa-mediated intercellular adhesion does not require PTPase activity or posttranslational proteolytic cleavage of the R-PTP-kappa protein and is calcium independent. The results suggest that R-PTPases may provide a link between cell-cell contact and cellular signaling events involving tyrosine phosphorylation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom