
Identification of distinct roles for separate E1A domains in disruption of E2F complexes.
Author(s) -
MasaAki Ikeda,
Joseph R. Nevins
Publication year - 1993
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.13.11.7029
Subject(s) - e2f , biology , retinoblastoma protein , transcription factor , microbiology and biotechnology , gene , cell cycle , genetics
The adenovirus E1A protein can disrupt protein complexes containing the E2F transcription factor in association with cellular regulatory proteins such as the retinoblastoma gene product (Rb) and the Rb-related p107 protein. Previous experiments have shown that the CR1 and CR2 domains of E1A are required for this activity. We now demonstrate that the CR2 domain is essential for allowing E1A to interact with the E2F-Rb or the E2F-p107-cyclin A-cdk2 complex. Multimeric complexes containing E1A can be detected when the CR1 domain has been rendered inactive by mutation. In addition, the E1A CR1 domain, but not the CR2 domain, is sufficient to prevent the interaction of E2F with Rb or p107. On the basis of these results, we suggest a model whereby the CR2 domain brings E1A to the E2F complexes and then, upon a normal equilibrium dissociation of Rb or p107 from E2F, the E1A CR1 domain is able to block the site of interaction on Rb or p107, thereby preventing the re-formation of the complexes.