z-logo
open-access-imgOpen Access
Characterization of the human interleukin-2 receptor beta-chain gene promoter: regulation of promoter activity by ets gene products.
Author(s) -
J X Lin,
N K Bhat,
Susan John,
William S. Queale,
Warren J. Leonard
Publication year - 1993
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.13.10.6201
Subject(s) - enhancer , biology , microbiology and biotechnology , gene , promoter , interleukin 12 receptor, beta 1 subunit , regulatory sequence , regulation of gene expression , 5' flanking region , transcription factor , gene expression , genetics , interleukin 21 receptor
The interleukin-2 receptor (IL-2R) beta chain (IL-2R beta) is an essential signaling component of high- and intermediate-affinity IL-2Rs. Our laboratory previously reported that a DNA fragment containing 857 bp of 5'-flanking sequence of the human IL-2R beta gene exhibited promoter activity. We have now further characterized the promoter and delineated cis-acting regulatory regions. The region downstream of -363 is critical for basal and phorbol myristate acetate-inducible IL-2R beta promoter activity and contains at least three enhancer-like regions. Among them, the -56 to -34 enhancer was the most potent and had high-level activity in two T-cell lines but not in nonlymphoid HeLaS3 and MG63 cells. This enhancer contains a GGAA Ets binding site which bound two Ets family proteins, Ets-1 and GA-binding protein in vitro. Mutation of the Ets motif strongly diminished both promoter and enhancer activities. We conclude that this Ets binding site plays a key role in regulating basal and phorbol myristate acetate-inducible IL-2R beta promoter activity and may also contribute to tissue-specific expression of the IL-2R beta gene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom