z-logo
open-access-imgOpen Access
Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase.
Author(s) -
Christophe Goyon,
Michael Lichten
Publication year - 1993
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.13.1.373
Subject(s) - heteroduplex , biology , synapsis , prophase , meiosis , genetics , synaptonemal complex , chromosomal crossover , genetic recombination , dna , base pair , microbiology and biotechnology , locus (genetics) , recombination , gene
To better understand the means by which chromosomes pair and recombine during meiosis, we have determined the time of appearance of heteroduplex DNA relative to the times of appearance of double-strand DNA breaks and of mature recombined molecules. Site-specific double-strand breaks appeared early in meiosis and were formed and repaired with a timing consistent with a role for breaks as initiators of recombination. Heteroduplex-containing molecules appeared about 1 h after double-strand breaks and were followed shortly by crossover products and the first meiotic nuclear division. We conclude that parental chromosomes are stably joined in heteroduplex-containing structures late in meiotic prophase and that these structures are rapidly resolved to yield mature crossover products. If the chromosome pairing and synapsis observed earlier in meiotic prophase is mediated by formation of biparental DNA structures, these structures most likely either contain regions of non-Watson-Crick base pairs or contain regions of heteroduplex DNA that either are very short or dissociate during DNA purification. Two loci were examined in this study: the normal ARG4 locus, and an artificial locus consisting of an arg4-containing plasmid inserted at MAT. Remarkably, sequences in the ARG4 promoter that suffered double-strand cleavage at the normal ARG4 locus were not cut at significant levels when present at MAT::arg4. These results indicate that the formation of double-strand breaks during meiosis does not simply involve the specific recognition and cleavage of a short nucleotide sequence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here