
A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression.
Author(s) -
Sutip Navankasattusas,
Hong Zhu,
Andrew G. Garcia,
Sylvia M. Evans,
Kenneth R. Chien
Publication year - 1992
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.12.4.1469
Subject(s) - biology , cardiac muscle , skeletal muscle , myocyte , gene , reporter gene , gene expression , luciferase , microbiology and biotechnology , mutagenesis , point mutation , binding site , myh7 , mutation , genetics , endocrinology , transfection , gene isoform
Recent studies have identified a conserved 28-bp element (HF-1) within the rat cardiac MLC-2 gene which confers cardiac muscle-specific and inducible expression during myocardial cell hypertrophy. Utilizing a combination of independent experimental approaches, this study characterizes two cardiac nuclear factors which bind to HF-1, a ubiquitous factor (HF-1a), and an A + T-rich binding factor (HF-1b) which is preferentially expressed in differentiated cardiac and skeletal muscle cells. The HF-1a binding site is located in a core region of the 28-bp conserved element, immediately upstream from the A + T-rich HF-1b site, which is homologous to the MEF-2 site found in a number of muscle genes. By a number of separate criteria (gel mobility shift, competition, and mutagenesis studies), HF-1b and MEF-2 appear to be indistinguishable and thus are either identical or closely related muscle factors. Transient assays of luciferase reporter genes containing point mutations throughout the 28-bp HF-1 regulatory element document the importance of both the HF-1a and HF-1b sites in transient assays in ventricular muscle cells. In the native 250-bp MLC-2 promoter fragment, mutations in the single E box had little effect on cardiac muscle specificity, while point mutations in either the HF-1a or HF-1b binding site significantly reduced promoter activity, underscoring the importance of both the HF-1a and HF-1b sites in the transcriptional activation of this cardiac muscle gene. Thus, this study provides evidence that a novel, ubiquitous factor (HF-1a) and a muscle factor (HF-1b/MEF-2) can form a novel, E-box-independent pathway for muscle-specific expression in ventricular cardiac muscle cells.