
Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2.
Author(s) -
Ronald C. Wek,
John F. Can,
Thomas E. Dever,
Alan G. Hinnebusch
Publication year - 1992
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.12.12.5700
Subject(s) - biology , derepression , protein phosphatase 1 , phosphatase , protein subunit , phosphorylation , protein phosphatase 2 , mutant , initiation factor , protein kinase a , g alpha subunit , microbiology and biotechnology , eukaryotic initiation factor , biochemistry , gene expression , gene , messenger rna , translation (biology) , psychological repression
GCN2 is a protein kinase in Saccharomyces cerevisiae that is required for increased expression of the transcriptional activator GCN4 in amino acid-starved cells. GCN2 stimulates GCN4 synthesis at the translational level by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2). We identified a truncated form of the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by its ability to restore derepression of GCN4 expression in a strain containing the partially defective gcn2-507 allele. Genetic analysis suggests that the truncated GLC7 allele has a dominant negative phenotype, reducing the level of native type 1 protein phosphatase activity in the cell. The truncated form of GLC7 does not suppress the regulatory defect associated with a gcn2 deletion or a mutation in the phosphorylation site of eIF-2 alpha (Ser-51). In addition, the presence of multiple copies of wild-type GLC7 impairs the derepression of GCN4 that occurs in response to amino acid starvation or dominant-activating mutations in GCN2. These findings suggest that the phosphatase activity of GLC7 acts in opposition to the kinase activity of GCN2 in modulating the level of eIF-2 alpha phosphorylation and the translational efficiency of GCN4 mRNA. This conclusion is supported by biochemical studies showing that the truncated GLC7 allele increases the level of eIF-2 alpha phosphorylation in the gcn2-507 mutant to a level approaching that seen in wild-type cells under starvation conditions. The truncated GLC7 allele also leads to reduced glycogen accumulation, indicating that this protein phosphatase is involved in regulating diverse metabolic pathways in yeast cells.