
A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein.
Author(s) -
Hitoshi Ueda,
Guan-Cheng Sun,
Takehide Murata,
Susumu Hirose
Publication year - 1992
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.12.12.5667
Subject(s) - zinc finger , biology , lim domain , dna binding protein , nuclear receptor , dna binding domain , microbiology and biotechnology , binding site , dna , biochemistry , transcription factor , gene
Fruit fly FTZ-F1, silkworm BmFTZ-F1, and mouse embryonal long terminal repeat-binding protein are members of the nuclear hormone receptor superfamily, which recognizes the same sequence, 5'-PyCAAGGPyCPu-3'. Among these proteins, a 30-amino-acid basic region abutting the C-terminal end of the zinc finger motif, designated the FTZ-F1 box, is conserved. Gel mobility shift competition by various mutant peptides of the DNA-binding region revealed that the FTZ-F1 box as well as the zinc finger motif is involved in the high-affinity binding of FTZ-F1 to its target site. Using a gel mobility shift matrix competition assay, we demonstrated that the FTZ-F1 box governs the recognition of the first three bases, while the zinc finger region recognizes the remaining part of the binding sequence. We also showed that the DNA-binding region of FTZ-F1 recognizes and binds to DNA as a monomer. Occurrence of the FTZ-F1 box sequence in other members of the nuclear hormone receptor superfamily raises the possibility that these receptors constitute a unique subfamily which binds to DNA as a monomer.