An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3' untranslated region of lymphokine mRNA.
Author(s) -
Paul R. Bohjanen,
B Petryniak,
Carl H. June,
Craig B. Thompson,
Tullia Lindsten
Publication year - 1991
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.11.6.3288
Subject(s) - biology , lymphokine , messenger rna , untranslated region , microbiology and biotechnology , rna binding protein , three prime untranslated region , cytoplasm , rna , translational efficiency , biochemistry , gene , translation (biology) , in vitro
Considerable evidence suggests that the metabolism of lymphokine mRNAs can be selectively regulated within the cytoplasm. However, little is known about the mechanism(s) that cells use to discriminate lymphokine mRNAs from other mRNAs within the cytoplasm. In this study we report a sequence-specific cytoplasmic factor (AU-B) that binds specifically to AUUUA multimers present in the 3' untranslated region of lymphokine mRNAs. AU-B does not bind to monomeric AUUUA motifs nor to other AU-rich sequences present in the 3' untranslated region of c-myc mRNA. AU-B RNA-binding activity is not present in quiescent T cells but is rapidly induced by stimulation of the T-cell receptor/CD3 complex. Induction of AU-B RNA-binding activity requires new RNA and protein synthesis. Stabilization of lymphokine mRNA induced by costimulation with phorbol myristate acetate correlates inversely with binding by AU-B. Together, these data suggest that AU-B is a cytoplasmic regulator of lymphokine mRNA metabolism.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom