
Ouabain-resistant mutants of the rat Na,K-ATPase alpha 2 isoform identified by using an episomal expression vector.
Author(s) -
Victor A. Canfield,
Janet Rettig Emanuel,
Nancy Spickofsky,
Robert Levenson,
Robert F. Margolskee
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.4.1367
Subject(s) - ouabain , biology , microbiology and biotechnology , complementary dna , gene isoform , g alpha subunit , alpha (finance) , mutagenesis , mutant , site directed mutagenesis , protein subunit , biochemistry , gene , chemistry , sodium , medicine , construct validity , nursing , organic chemistry , patient satisfaction
Site-directed mutagenesis was used to identify residues responsible for the greater than 1,000-fold difference in ouabain sensitivity between the rat Na,K-ATPase alpha 1 and alpha 2 isoforms. A series of mutagenized cDNAs was constructed that replaced residues of the rat alpha 2 subunit with the corresponding residues from the rat alpha 1 subunit. These cDNAs were cloned into a mammalian episomal expression vector (EBOpLPP) and expressed in ouabain-sensitive primate cells. Either of two single substitutions introduced into the rat alpha 2 subunit cDNA (Leu-111----Arg or Asn-122----Asp) conferred partial resistance (approximately 10 microM ouabain) upon transformed cells. This resistance was intermediate between the levels conferred by the rat alpha 1 cDNA (approximately 500 microM ouabain) and the rat alpha 2 cDNA (approximately 0.2 microM ouabain). A double substitution of the rat alpha 2 cDNA (Leu-111----Arg and Asn-122----Asp) conferred a resistance level equivalent to that obtained with rat alpha 1. These results demonstrate that the residues responsible for isoform-specific differences in ouabain sensitivity are located at the end of the H1-H2 extracellular domain. The combination of site-directed mutagenesis and episomal expression provides a useful system for the selection and analysis of mutants.