z-logo
open-access-imgOpen Access
The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture.
Author(s) -
Wayne P. Wahls,
Linda J. Wallace,
Peter D. Moore
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.2.785
Subject(s) - homologous recombination , biology , gene conversion , flp frt recombination , dna , recombination , in vitro recombination , microbiology and biotechnology , gene , genetic recombination , non allelic homologous recombination , recombinant dna , base pair , genetics , plasmid , peptide sequence , molecular cloning
Tracts of the alternating dinucleotide polydeoxythymidylic-guanylic [d(TG)].polydeoxyadenylic-cytidylic acid [d(AC)], present throughout the human genome, are capable of readily forming left-handed Z-DNA in vitro. We have analyzed the effects of the Z-DNA motif d(TG)30 upon homologous recombination between two nonreplicating plasmid substrates cotransfected into human cells in culture. In this study, the sequence d(TG)30 is shown to stimulate homologous recombination up to 20-fold. Enhancement is specific to the Z-DNA motif; a control DNA fragment of similar size does not alter the recombination frequency. The stimulation of recombination is observed at a distance (237 to 1,269 base pairs away from the Z-DNA motif) and involves both gene conversion and reciprocal exchange events. Maximum stimulation is observed when the sequence is present in both substrates, but it is capable of stimulating when present in only one substrate. Analysis of recombination products indicates that the Z-DNA motif increases the frequency and alters the distribution of multiple, unselected recombination events. Specifically designed crosses indicate that the substrate containing the Z-DNA motif preferentially acts as the recipient of genetic information during gene conversion events. Models describing how left-handed Z-DNA sequences might promote the initiation of homologous recombination are presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom