z-logo
open-access-imgOpen Access
UHRF1 Suppresses HIV-1 Transcription and Promotes HIV-1 Latency by Competing with p-TEFb for Ubiquitination-Proteasomal Degradation of Tat
Author(s) -
Taizhen Liang,
Qiao Zhang,
Ziyao Wu,
Pei Chen,
Yehui Huang,
Shuwen Liu,
Lin Li
Publication year - 2021
Publication title -
mbio
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.562
H-Index - 121
eISSN - 2161-2129
pISSN - 2150-7511
DOI - 10.1128/mbio.01625-21
Subject(s) - p tefb , ubiquitin , ring finger , transcription factor , microbiology and biotechnology , biology , transcription (linguistics) , virology , genetics , promoter , gene , gene expression , linguistics , philosophy
ABSTRACT HIV-1 remains incurable due to viral reservoirs, which lead to durably latent HIV infection. Identifying novel host factors and deciphering the molecular mechanisms involved in the establishment and maintenance of latency are critical to discover new targets for the development of novel anti-HIV agents. Here, we show that ubiquitin-like with PHD and RING finger domain 1 (UHRF1) modulates HIV-1 5′-long terminal repeat (LTR)-driven transcription of the viral genome as a novel HIV-1 restriction factor. Correspondingly, UHRF1 depletion reversed the latency of HIV-1 proviruses. Mechanistically, UHRF1 competed with positive transcription factor b (p-TEFb) for the binding to the cysteine-rich motifs of HIV-1 Tat via its TTD, PHD, and RING finger domains. Furthermore, UHRF1 mediated K48-linked ubiquitination and proteasomal degradation of Tat in RING-dependent ways, leading to the disruption of Tat/cyclin T1/CDK9 complex and consequential impediment of transcription elongation. In summary, our findings revealed that UHRF1 is an important mediator of HIV-1 latency by controlling Tat-mediated transcriptional activation, providing novel insights on host-pathogen interaction for modulating HIV-1 latency, beneficial for the development of anti-AIDS therapies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here