z-logo
open-access-imgOpen Access
The BvgAS Regulon of Bordetella pertussis
Author(s) -
Kyung Ho Moon,
Richard P. Bonocora,
David D. Kim,
Qing Chen,
Joseph T. Wade,
Scott Stibitz,
Deborah M. Hinton
Publication year - 2017
Publication title -
mbio
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.562
H-Index - 121
eISSN - 2161-2129
pISSN - 2150-7511
DOI - 10.1128/mbio.01526-17
Subject(s) - regulon , bordetella pertussis , virulence , gene , transcription factor , biology , promoter , response regulator , transcriptional regulation , two component regulatory system , microbiology and biotechnology , biochemistry , gene expression , genetics , mutant , bacteria
Nearly all virulence factors in Bordetella pertussis are activated by a master two-component system, BvgAS, composed of the sensor kinase BvgS and the response regulator BvgA. When BvgS is active, BvgA is phosphorylated (BvgA~P), and virulence-activated genes ( vag s) are expressed [Bvg(+) mode]. When BvgS is inactive and BvgA is not phosphorylated, virulence-repressed genes ( vrg s) are induced [Bvg(-) mode]. Here, we have used transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR) to define the BvgAS-dependent regulon of B. pertussis Tohama I. Our analyses reveal more than 550 BvgA-regulated genes, of which 353 are newly identified. BvgA-activated genes include those encoding two-component systems (such as kdpED ), multiple other transcriptional regulators, and the extracytoplasmic function (ECF) sigma factor brpL , which is needed for type 3 secretion system (T3SS) expression, further establishing the importance of BvgA~P as an apex regulator of transcriptional networks promoting virulence. Using in vitro transcription, we demonstrate that the promoter for brpL is directly activated by BvgA~P. BvgA-FeBABE cleavage reactions identify BvgA~P binding sites centered at positions -41.5 and -63.5 in bprL Most importantly, we show for the first time that genes for multiple and varied metabolic pathways are significantly upregulated in the B. pertussis Bvg(-) mode. These include genes for fatty acid and lipid metabolism, sugar and amino acid transporters, pyruvate dehydrogenase, phenylacetic acid degradation, and the glycolate/glyoxylate utilization pathway. Our results suggest that metabolic changes in the Bvg(-) mode may be participating in bacterial survival, transmission, and/or persistence and identify over 200 new vrg s that can be tested for function. IMPORTANCE Within the past 20 years, outbreaks of whooping cough, caused by Bordetella pertussis , have led to respiratory disease and infant mortalities, despite good vaccination coverage. This is due, at least in part, to the introduction of a less effective acellular vaccine in the 1990s. It is crucial, then, to understand the molecular basis of B. pertussis growth and infection. The two-component system BvgA (response regulator)/BvgS (histidine kinase) is the master regulator of B. pertussis virulence genes. We report here the first RNA-seq analysis of the BvgAS regulon in B. pertussis , revealing that more than 550 genes are regulated by BvgAS. We show that genes for multiple and varied metabolic pathways are highly regulated in the Bvg(-) mode (absence of BvgA phosphorylation). Our results suggest that metabolic changes in the Bvg(-) mode may be participating in bacterial survival, transmission, and/or persistence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here