
Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers
Author(s) -
Anna Michalik,
Diego Castillo Franco,
Michal Kobiałka,
Teresa Szklarzewicz,
Adam Stroiński,
Piotr Łukasik
Publication year - 2021
Publication title -
mbio
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.562
H-Index - 121
eISSN - 2161-2129
pISSN - 2150-7511
DOI - 10.1128/mbio.01228-21
Subject(s) - biology , host (biology) , symbiosis , symbiotic bacteria , coevolution , evolutionary biology , zoology , genetics , bacteria
Sap-sucking hemipterans host specialized, heritable microorganisms that supplement their diet with essential nutrients. These microbes show unusual features that provide a unique perspective on the coevolution of host-symbiont systems but are still poorly understood. Here, we combine microscopy with high-throughput sequencing to revisit 80-year-old reports on the diversity of symbiont transmission modes in a broadly distributed planthopper family, Dictyopharidae. We show that in seven species examined, the ancestral nutritional symbionts Sulcia and Vidania producing essential amino acids are complemented by co-primary symbionts, either Arsenophonus or Sodalis , acquired several times independently by different host lineages and contributing to the biosynthesis of B vitamins. These symbionts reside within separate bacteriomes within the abdominal cavity, although in females Vidania also occupies bacteriocytes in the rectal organ. Notably, the symbionts are transovarially transmitted from mothers to offspring in two alternative ways. In most examined species, all nutritional symbionts simultaneously infect the posterior end of the full-grown oocytes and next gather in their perivitelline space. In contrast, in other species, Sodalis colonizes the cytoplasm of the anterior pole of young oocytes, forming a cluster separate from the “symbiont ball” formed by late-invading Sulcia and Vidania . Our results show how newly arriving microbes may utilize different strategies to establish long-term heritable symbiosis.