
Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm
Author(s) -
Patrick Younan,
Mathieu Iampietro,
Andrew Nishida,
Palaniappan Ramanathan,
Rodrigo I. Santos,
Mukta Dutta,
Ndongala Michel Lubaki,
Richard A. Koup,
Michael G. Katze,
Alexander Bukreyev
Publication year - 2017
Publication title -
mbio
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.562
H-Index - 121
eISSN - 2161-2129
pISSN - 2150-7511
DOI - 10.1128/mbio.00845-17
Subject(s) - cytokine storm , ebola virus , virology , cytokine , immunology , virus , covid-19 , biology , medicine , infectious disease (medical specialty) , disease , pathology
Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a “cytokine storm.” Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1 −/− mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1 −/− mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine–Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4 Hi CD3 Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4 + T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4 + T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD.