z-logo
open-access-imgOpen Access
Persistent Infection of Human Pancreatic Islets by Coxsackievirus B Is Associated with Alpha Interferon Synthesis in β Cells
Author(s) -
Wassim Chehadeh,
Julie KerrConte,
François Pattou,
Gunar Alm,
Jean Lefèbvre,
P Wattré,
Didier Hober
Publication year - 2000
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.74.21.10153-10164.2000
Subject(s) - biology , coxsackievirus , virology , viral replication , microbiology and biotechnology , alpha interferon , pancreatic islets , interferon , antibody , virus , rna , beta cell , islet , enterovirus , immunology , gene , insulin , biochemistry , endocrinology
The interactions of coxsackievirus B3 (CVB3), CVB4E2 (diabetogenic), and CVB4JBV (nondiabetogenic) strains with human pancreatic islets from eight adult brain-dead donors were investigated. Persistent replication of viruses in human islets was proved by detection of viral RNA by in situ hybridization, VP1 capsid protein by immunofluorescence (IF) staining, negative-strand viral RNA by reverse transcription-PCR in extracted RNA from islets, and release of infectious particles up to 30 days after infection without obvious cytolysis. By double IF staining, glucagon-containing α cells and insulin-containing β cells were shown to be susceptible to CVB. The persistence of CVB3 and CVB4 in islet cells was associated with the chronic synthesis of alpha interferon (IFN-α), as evidenced by the detection of IFN-α mRNA and immunoreactive IFN-α with antiviral activity. By double IF staining, IFN-α was detected in insulin-producing β cells only. Experiments with neutralizing anti-coxsackievirus and adenovirus receptor (CAR) antibodies provided evidence that CAR was expressed by α and β cells and that it played a role in the infection of these cells with CVB and the consecutive IFN-α expression in β cells. The viral replication and the expression of IFN-α in islets were not restricted to the CVB4E2 diabetogenic strain and did not depend on the genetic background of the host. The neutralization of endogenous IFN-α significantly enhanced the CVB replication in islet cells and resulted in rapid destruction of islets. Thus, human β cells can harbor a persistent CVB infection, and CVB-induced IFN-α plays a role in the initiation and/or maintenance of chronic CVB infection in human islets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom