z-logo
open-access-imgOpen Access
Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses
Author(s) -
Luc DesGroseillers,
Paul Jolicoeur
Publication year - 1983
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.48.3.685-696.1983
Subject(s) - biology , recombinant dna , virology , microbiology and biotechnology , tropism , gene , murine leukemia virus , tissue tropism , virus , dna , leukemia , genetics
The murine leukemia viruses (MuLVs) have different host ranges and were originally designated N-tropic and B-tropic if they replicated preferentially in vitro on NIH and BALB/c fibroblasts, respectively. It was later found that N-tropic MuLVs were in fact restricted in BALB/c cells, that B-tropic MuLVs were restricted in NIH cells, and that both viruses were restricted in (BALB X NIH) F1 cells. A single gene, Fv-1, with two alleles, Fv-1b and Fv-1n, determines this dominant restriction. A virus-encoded protein seems to carry the viral host range determinant which is recognized by the Fv-1 gene product. To map the viral DNA sequences encoding this determinant, we constructed viral DNA recombinants in vitro between the cloned infectious viral DNA genomes from BALB/c N-tropic and B-tropic MuLVs. Infectious recombinant MuLVs were recovered by microinjecting these recombinant DNAs into murine Fv-1- SC-1 cells and were subsequently tested in vitro for their host ranges (N- or B-tropic). We found that a short 302-base pair 5'-end fragment was necessary and sufficient to confer a specific host range to a recombinant. Our sequencing data revealed that this fragment codes for amino acid sequences in gag p30. They also showed that only two consecutive amino acid differences, Gln-ArgN- and Thr-GluB-, in p30 are responsible for the N- and B-tropic host ranges of the BALB/c MuLVs, respectively. Therefore, it appears that the Fv-1b and Fv-1n gene products can discriminate between these two p30 amino acid sequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom