z-logo
open-access-imgOpen Access
Recovery of Hydrogen Peroxide-Sensitive Culturable Cells of Vibrio vulnificus Gives the Appearance of Resuscitation from a Viable but Nonculturable State
Author(s) -
Gregg Bogosian,
Noelle D. Aardema,
Edward V. Bourneuf,
Patricia J. L. Morris,
Julia P. O’Neil
Publication year - 2000
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.182.18.5070-5075.2000
Subject(s) - viable but nonculturable , hydrogen peroxide , vibrio vulnificus , catalase , microbiology and biotechnology , biology , sodium pyruvate , vibrionaceae , bacteria , biochemistry , oxidative stress , genetics
The viabilities of five strains ofVibrio vulnificus were evaluated during the storage of the organisms in sterile seawater at 5°C. The number of CFU was measured by plate count methods on rich media. The total cell numbers were determined by direct microscopic count methods. The titer of CFU declined logarithmically to undetectable levels over a period of 2 to 3 weeks, while the total cell numbers were unchanged. Midway through each study, higher culturable cell counts began to be observed on plates containing catalase or sodium pyruvate; during the latter stages of the study, the plate counts on such media were up to 1,000-fold higher than those on unsupplemented plates. Because autoclaving is known to generate hydrogen peroxide in rich media, and because catalase and sodium pyruvate are known to eliminate hydrogen peroxide, it appears that the conditions of the experiments led to the selection of a hydrogen peroxide-sensitive culturable cell subpopulation. At the time of the final stage of the decline in viability of each culture, hydrogen peroxide-sensitive cells were the only culturable cells present. Warming samples of the cultures to room temperature led to the growth of these residual culturable cells, utilizing nutrients provided by the nonculturable cells. The cells that grew recovered hydrogen peroxide resistance. When mixtures of culturable and nonculturable cells were diluted to the point where only nonculturable cells were present, or when the hydrogen peroxide-sensitive culturable cells had declined to undetectable levels, warming had no effect; no culturable cells were recovered. Warming has been reported to “resuscitate” nonculturable cells. Recognition of the existence of hydrogen peroxide-sensitive culturable cell populations, as well as their ability to grow to high levels in the warmed seawater microcosms, leads instead to the conclusion that while warming permits culturable cells to grow, it has no effect on nonculturable cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here