Open Access
Characterization of DinR, the Bacillus subtilis SOS repressor
Author(s) -
Kevin W. Winterling,
Arthur S. Levine,
Ronald E. Yasbin,
Roger Woodgate
Publication year - 1997
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.179.5.1698-1703.1997
Subject(s) - repressor lexa , regulon , repressor , bacillus subtilis , biology , escherichia coli , sos response , genetics , gene , transcription factor , bacteria
In Bacillus subtilis, exposure to DNA damage and the development of natural competence lead to the induction of the SOS regulon. It has been hypothesized that the DinR protein is the cellular repressor of the B. subtilis SOS system due to its homology to the Escherichia coli LexA transcriptional repressor. Indeed, comparison of DinR and its homologs from gram-negative and -positive bacteria revealed conserved structural motifs within the carboxyl-terminal domain that are believed to be important for autocatalysis of the protein. In contrast, regions within the DNA binding domain were conserved only within gram-negative or -positive genera, which possibly explains the differences in the sequence specificities between gram-negative and gram-positive SOS boxes. The hypothesis that DinR is the repressor of the SOS regulon in B. subtilis has been tested through overexpression, purification, and characterization of the DinR protein. Like E. coli LexA, B. subtilis DinR undergoes an autocatalytic reaction at alkaline pH at a siscile Ala91-Gly92 bond. The cleavage reaction can also be mediated in vitro under more physiological conditions by the E. coli RecA protein. By using electrophoretic mobility shift assays, we demonstrated that DinR interacts with the previously characterized SOS box of the B. subtilis recA gene, but not with sequences containing single base pair mutations within the SOS box. Together, these observations strongly suggest that DinR is the repressor of the SOS regulon in B. subtilis.