
Protein conformational change and nucleotide binding involved in regulation of sigmaF in Bacillus subtilis
Author(s) -
Matthew Lord,
Thierry Magnin,
M. D. Yudkin
Publication year - 1996
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.178.23.6730-6735.1996
Subject(s) - biology , bacillus subtilis , proteolysis , biochemistry , nucleotide , serine , mutant , phosphorylation , plasma protein binding , biophysics , enzyme , bacteria , genetics , gene
We have studied the ability of three mutant forms of SpoIIAA, containing amino acid substitutions at the site of phosphorylation (serine 58), to interact with SpoIIAB. Native gel analysis revealed that SpoIIAAS58A could form a complex with SpoIIAB in the presence of ADP and more strongly in the presence of ATP. SpoIIAAS58N did not form a complex with SpoIIAB in the presence of ADP but displayed some interaction with SpoIIAB in the presence of ATP. SpoIIAAS58D was unable to form a complex with SpoIIAB in the presence of either ADP or ATP. Corresponding differences were found in the behavior of the three mutant proteins when studied by gel permeation with high-performance liquid chromatography and limited proteolysis. SpoIIAAS58A behaved like the wild-type SpoIIAA, SpoIIAAS58D like SpoIIAA-P, and SpoIIAAS58N in a way that was intermediate between the behaviors of SpoIIAA and SpoIIAA-P. Limited proteolysis was also used to show that on binding of ADP or ATP SpoIIAB undergoes a shift in conformation. The affinity of SpoIIAB for ADP and ATP was determined by limited proteolysis in the presence of a wide range of nucleotide concentrations. The results indicated that SpoIIAB has approximately equal affinity for ADP and for ATP.