z-logo
open-access-imgOpen Access
Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum
Author(s) -
Laurence Dupont,
Brigitte Boizet-Bonhoure,
Michèle Coddeville,
Frédéric Auvray,
Paul Ritzenthaler
Publication year - 1995
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.177.3.586-595.1995
Subject(s) - biology , integrases , temperateness , integrase , recombinase , genetics , gene , bacteriophage , open reading frame , phagemid , lysogenic cycle , plasmid , microbiology and biotechnology , escherichia coli , peptide sequence , recombination
Temperate phage mv4 integrates its DNA into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus strains via site-specific recombination. Nucleotide sequencing of a 2.2-kb attP-containing phage fragment revealed the presence of four open reading frames. The larger open reading frame, close to the attP site, encoded a 427-amino-acid polypeptide with similarity in its C-terminal domain to site-specific recombinases of the integrase family. Comparison of the sequences of attP, bacterial attachment site attB, and host-phage junctions attL and attR identified a 17-bp common core sequence, where strand exchange occurs during recombination. Analysis of the attB sequence indicated that the core region overlaps the 3' end of a tRNA(Ser) gene. Phage mv4 DNA integration into the tRNA(Ser) gene preserved an intact tRNA(Ser) gene at the attL site. An integration vector based on the mv4 attP site and int gene was constructed. This vector transforms a heterologous host, L. plantarum, through site-specific integration into the tRNA(Ser) gene of the genome and will be useful for development of an efficient integration system for a number of additional bacterial species in which an identical tRNA gene is present.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here