
The effect of ferredoxin(BED) overexpression on benzene dioxygenase activity in Pseudomonas putida ML2
Author(s) -
H. Tan,
Christopher L. Joannou,
Chris E. Cooper,
Catherine Butler,
Richard Cammack,
Jeremy R. Mason
Publication year - 1994
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.176.9.2507-2512.1994
Subject(s) - ferredoxin , pseudomonas putida , biology , dioxygenase , biochemistry , ferredoxin thioredoxin reductase , enzyme , glutathione , thioredoxin reductase
The benzene dioxygenase from Pseudomonas putida ML2 is a multicomponent complex comprising a flavoprotein reductase, a ferredoxin, and a terminal iron-sulfur protein (ISP). The catalytic activity of the isolated complex shows a nonlinear relationship with protein concentration in cell extracts, with the limiting factor for activity in vitro being ferredoxin(BED). The relative levels of the three components were analyzed by using 125I-labelled antibodies, and the functional molar ratio of ISP(BED), ferredoxin(BED), and reductase(BED) was shown to be 1:0.9:0.8, respectively. The concentration of ferredoxin(BED) was confirmed by quantitative electron paramagnetic resonance spectroscopy of the 2Fe-2S centers in ferredoxin(BED) and ISP(BED) of whole cells. These results demonstrate that the ferredoxin(BED) component is a limiting factor in dioxygenase activity in vitro. To determine if it is a limiting factor in vivo, a plasmid (pJRM606) overproducing ferredoxin(BED) was introduced into P. putida ML2. The benzene dioxygenase activity of this strain, measured in cell extracts, was fivefold greater than in the wild type, and the activity was linear with protein concentration in cell extracts above 2 mg/ml. Western blotting (immunoblotting) and electron paramagnetic resonance spectroscopic analysis confirmed an elevated level of ferredoxin(BED) protein and active redox centers in the recombinant strain. However, in these cells, the increased level of ferredoxin(BED) had no effect on the overall rate of benzene oxidation by whole cells. Thus, we conclude that ferredoxin(BED) is not limiting at the high intracellular concentration (0.48 mM) found in cells.