
L-lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose
Author(s) -
Josefa Badı́a,
Rosa Gíménez,
Laura Baldomà,
Eugene M. Barnes,
WolfDieter Fessner,
Juan Aguilar
Publication year - 1991
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.173.16.5144-5150.1991
Subject(s) - rhamnose , biochemistry , biology , aldolase a , escherichia coli , dehydrogenase , isomerase , fructose bisphosphate aldolase , mutant , enzyme , galactose , gene
Escherichia coli cannot grow on L-lyxose, a pentose analog of the 6-deoxyhexose L-rhamnose, which supports the growth of this and other enteric bacteria. L-Rhamnose is metabolized in E. coli by a system that consists of a rhamnose permease, rhamnose isomerase, rhamnulose kinase, and rhamnulose-1-phosphate aldolase, which yields the degradation products dihydroxyacetone phosphate and L-lactaldehyde. This aldehyde is oxidized to L-lactate by lactaldehyde dehydrogenase. All enzymes of the rhamnose system were found to be inducible not only by L-rhamnose but also by L-lyxose. L-Lyxose competed with L-rhamnose for the rhamnose transport system, and purified rhamnose isomerase catalyzed the conversion of L-lyxose into L-xylulose. However, rhamnulose kinase did not phosphorylate L-xylulose sufficiently to support the growth of wild-type E. coli on L-lyxose. Mutants able to grow on L-lyxose were analyzed and found to have a mutated rhamnulose kinase which phosphorylated L-xylulose as efficiently as the wild-type enzyme phosphorylated L-rhamnulose. Thus, the mutated kinase, mapped in the rha locus, enabled the growth of the mutant cells on L-lyxose. The glycolaldehyde generated in the cleavage of L-xylulose 1-phosphate by the rhamnulose-1-phosphate aldolase was oxidized by lactaldehyde dehydrogenase to glycolate, a compound normally utilized by E. coli.