z-logo
open-access-imgOpen Access
Characterization of alcohol dehydrogenase genes of derepressible wild-type Alcaligenes eutrophus H16 and constitutive mutants
Author(s) -
Dieter Jendrossek,
Niels Krüger,
Alexander Steinbüchel
Publication year - 1990
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.172.9.4844-4851.1990
Subject(s) - biology , gene , mutant , nucleic acid sequence , alcohol dehydrogenase , microbiology and biotechnology , operon , escherichia coli , genetics , biochemistry , enzyme
The nucleotide sequence of the gene that encodes the fermentative, derepressible alcohol dehydrogenase (ADH) in Alcaligenes eutrophus H16 and of adjacent regions was recently determined. Two potential -10 regions resembling the Escherichia coli sigma 70 consensus sequence were identified 77 and 93 nucleotides upstream of the structural gene. By determination of the 5' mRNA terminus of the wild-type adh gene, the proximal -10 region was identified as responsible for adh expression under derepressive conditions. Transcription started seven nucleotides downstream of this region, at position 388. Sequence analysis of seven mutants expressing the adh gene under aerobic conditions revealed mutations in one or the other potential -10 region. In all seven strains, the mutations restored the invariant T of the E. coli promoter consensus sequence. Mutants altered in the proximal -10 region transcribed the adh gene under aerobic conditions with the same 5' mRNA terminus as in the wild type; gene expression was impaired very little under aerobic conditions. Mutants altered in the distal -10 region also transcribed the adh gene aerobically but were still partially derepressible. The 5' mRNA terminus was seven nucleotides downstream of the distal -10 region, at position 372. When these mutants were cultivated under conditions of restricted oxygen supply, the adh gene was transcribed from both -10 regions, resulting in the synthesis of two mRNA species with different 5' termini.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here