z-logo
open-access-imgOpen Access
Control of intracellular serine protease expression in Bacillus subtilis
Author(s) -
Mark E. Ruppen,
G L Van Alstine,
Louise Band
Publication year - 1988
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.170.1.136-140.1988
Subject(s) - biology , bacillus subtilis , mutant , protease , intracellular , transcription (linguistics) , microbiology and biotechnology , extracellular , gene expression , gene , gene product , serine , lac operon , serine protease , plasmid , biochemistry , enzyme , genetics , bacteria , linguistics , philosophy
Expression of the major intracellular serine protease (ISP-1) gene of Bacillus subtilis was studied by using a translational fusion plasmid in which the isp promoter region was fused to the lacZ gene. beta-Galactosidase activity, used to measure transcription from the isp promoter, was produced immediately after the end of exponential growth, whereas intracellular protease activity was not detected until 4 h later. These results are consistent with a previous suggestion that ISP-1 initially accumulates in the cell in an enzymatically inactive form. ISP-1 activity was detected in all of the sporulation-deficient strains examined, and the amount of protease activity always corresponded to the amount of beta-galactosidase activity. These results indicate that the activation of ISP-1 is not dependent on a sporulation-specific gene product. Expression of ISP-1 is regulated by a number of mutations known to affect the expression of extracellular enzymes. In sacU(h) and sacQ(h) mutants, the expression of ISP-1 was 10-fold higher than in the wild-type strain. In catA, hpr, and scoC strains, expression of ISP was stimulated two- to threefold, whereas in sacU mutants the expression of ISP-1 was reduced to less than 10% of the wild-type level. The temporal expression and activation of ISP-1 was not affected by any of these mutations. This is the first evidence that the expression of a native intracellular protein is affected by these hyperproduction mutations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here