
Regulation of cell division in Escherichia coli K-12: probable interactions among proteins FtsQ, FtsA, and FtsZ
Author(s) -
Abigail E. Descoteaux,
Gabriel R. Drapeau
Publication year - 1987
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.169.5.1938-1942.1987
Subject(s) - ftsz , mutant , escherichia coli , cell division , biology , mutation , plasmid , gene , wild type , microbiology and biotechnology , genetics , cell
In Escherichia coli, the FtsQ, FtsA, and FtsZ proteins are believed to play essential roles in the regulation of cell division. Of the three proteins, FtsZ has received the most attention, particularly because of its interactions with SfiA. Double mutants which carry mutations located in the ftsQ, ftsA, or ftsZ gene in combination with the lon-1 mutation were constructed. In the presence of the lon-1 mutation, which is known to stabilize SfiA, the ftsQ1 mutant cells were not capable of forming colonies on a rich agar medium, whereas mutant cells harboring either one of the mutations grew well on this medium. Examination of lon-1 fts double-mutant cells for sensitivity to UV light revealed that those carrying the ftsA10 allele were resistant. It was also observed that in the presence of a multicopy plasmid containing a wild-type ftsZ gene, the ftsQ1 mutant filamented markedly following a nutritional shift-up and that the division rate of ftsZ84 mutant cells was slightly reduced when they harbored a wild-type ftsQ-containing plasmid. The possibility that the Fts proteins are interacting with one another and forming a molecular complex is discussed.