
Processing and secretion of the Yarrowia lipolytica RNase
Author(s) -
Suk-Chun Cheng,
David M. Ogrydziak
Publication year - 1987
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.169.4.1433-1440.1987
Subject(s) - yarrowia , rnase p , biology , tunicamycin , immunoprecipitation , kilodalton , rnase mrp , biochemistry , ribonuclease , extracellular , endoglycosidase h , intracellular , microbiology and biotechnology , secretion , rnase ph , rnase h , yeast , rna , endoplasmic reticulum , golgi apparatus , unfolded protein response , gene
Secretion of the extracellular RNase from the yeast Yarrowia lipolytica was studied in pulse-chase and immunoprecipitation experiments. A polypeptide of 45,000 daltons was immunoprecipitated from [35S]methionine-labeled cell extracts and supernatant medium by rabbit anti-RNase antiserum. The RNase was secreted rapidly; the time between synthesis and appearance in the extracellular medium was about 5 min. In pulse-chase experiments, about 50% of the RNase was still cell associated 30 min after labeling. A polypeptide of 73,000 daltons whose immunoprecipitation was blocked by an excess of purified RNase was also detected. It broke down to a polypeptide with the same mobility and same peptide map as the mature RNase. Peptide maps of the undegraded 73-kilodalton polypeptide and the intracellular mature RNase contained several peptides of identical mobility. Immunoprecipitates from cells labeled in the presence of tunicamycin contained 66- and 45-kilodalton polypeptides. Endoglycosidase H treatment of the 73-kilodalton polypeptide converted it to a 66-kilodalton form, but did not change the apparent molecular weight of the mature form of the RNase. Labeling kinetics from pulse-chase experiments did not clearly support a precursor-product relationship between the 73-kilodalton polypeptide and the intracellular 45-kilodalton form of the RNase, and other relationships between the two polypeptides are possible.