z-logo
open-access-imgOpen Access
Osmotically induced changes in the ornithine decarboxylase activity of Dictyostelium discoideum
Author(s) -
William A. Harris,
Michael North
Publication year - 1982
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.150.2.716-721.1982
Subject(s) - biology , cycloheximide , biochemistry , dictyostelium discoideum , ornithine decarboxylase , ornithine , putrescine , tonicity , enzyme , spermine , enzyme assay , protein biosynthesis , amino acid , arginine , gene
Myxamoebae of Dictyostelium discoideum from exponentially growing cultures showed altered ornithine decarboxylase activity upon external osmotic perturbation. On transfer to hypotonic NaCl solutions (20 mosmol/kg), cells showed high enzyme activity which was relatively independent of the concentration of the coenzyme pyridoxal phosphate (assay concentrations, 5 and 200 microM). In hypertonic solution (400 mosmol/kg) cells had a reduced level of ornithine decarboxylase activity which was dependent on the coenzyme concentration. The changes in activity were freely reversible in further external osmotic manipulation. The response to osmotic change occurred rapidly, within a few minutes. The changes still occurred at 7 degrees C but 2 mM sodium azide prevented the formation of the high activity form, although this effect was reversed when azide was removed. Cycloheximide had no effect on the osmotically induced changes. Addition of putrescine caused ornithine decarboxylase eventually to the converted to the low-activity form regardless of the osmolality of the solution. The characteristic cofactor concentration dependence of the high- and low-activity form were retained on storage of the cell extracts. No evidence was found for diffusible effectors which stabilized one or the other form of the activity. The enzymes responsible for the two forms were of the same molecular size as judged by gel filtration, and the activities had similar thermostabilities. The results are interpreted in terms of an osmotically induced interconversion of two forms of a single ornithine decarboxylase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom