Biochemical Localization of Alkaline Phosphatase in the Cell Wall of a Marine Pseudomonad
Author(s) -
Linda M. M. Thompson,
Robert A. MacLeod
Publication year - 1974
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.117.2.819-825.1974
Subject(s) - alkaline phosphatase , periplasmic space , phosphatase , lysis , biochemistry , cell wall , biology , cell envelope , toluene , enzyme , lysozyme , microbiology and biotechnology , biophysics , chemistry , escherichia coli , organic chemistry , gene
The various layers of the cell envelope of marine pseudomonad B-16 (ATCC 19855) have been separated from the cells and assayed directly for alkaline phosphatase activity under conditions established previously to be optimum for maintenance of the activity of the enzyme. Under conditions known to lead to the release of the contents of the periplasmic space from the cells, over 90% of the alkaline phosphatase was released into the medium. Neither the loosely bound outer layer nor the outer double-track layer (cell wall membrane) showed significant activity. A small amount of the alkaline phosphatase activity of the cells remained associated with the mureinoplasts when the outer layers of the cell wall were removed. Upon treatment of the mureinoplasts with lysozyme, some alkaline phosphatase was released into the medium and some remained with the protoplasts formed. Cells washed and suspended in 0.5 M NaCl were lysed by treatment with 2% toluene, and 95% of the alkaline phosphatase in the cells was released into the medium. Cells washed and suspended in complete salts solution (0.3 M NaCl, 0.05 M MgSO4 , and 0.01 M KCl) or 0.05 M MgSO4 appeared intact after treatment with toluene but lost 50 and 10%, respectively, of their alkaline phosphatase. The results suggest that the presence of Mg2+ in the cell wall is necessary to prevent disruption of the cells by toluene and may also be required to prevent the release of alkaline phosphatase by toluene when disruption of the cells by toluene does not take place.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom