Genetic basis of toxin production and pathogenesis in Vibrio cholerae: evidence against phage conversion
Author(s) -
J. Gerdes,
W. R. Romig
Publication year - 1975
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.11.3.445-452.1975
Subject(s) - lysogen , biology , vibrio cholerae , microbiology and biotechnology , lysogenic cycle , el tor , cholera , bacteriophage , cholera toxin , toxin , exotoxin , virology , strain (injury) , vibrio , bacteria , escherichia coli , genetics , gene , anatomy
The pathogenicity of Vibrio cholerae strains "cured" of "Kappa-type" phage was not significantly altered relative to that of their "Kappa" lysogenic parental strains. Unlike Corynebacterium diphtheriae, the capacity of V. cholerae to produce exotoxin was not stimulated as a consequence of active phage multiplication. Toxin production in cultures in which Kappa-type phage multiplication was initiated either by inducing Kappa lysogens or by infecting naturally occurring or "cured" Kappa-sensitive strains was greatly reduced compared to normally growing control cultures. Kappa-sensitive El Tor strain Mak 757 and a Kappa lysogen derived from it did not differ in their capacity to colonize ligated rabbit ileal loops nor in their sensitivites to ultraviolet radiation, acidic pH, or osmotic shock. We conclude that Kappa-type phages do not directly affect the pathogenicity of these V. cholerae strains.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom