
Effects of Myeloid Hif-1β Deletion on the Intestinal Microbiota in Mice under Environmental Hypoxia
Author(s) -
Ni Han,
Zhiyuan Pan,
Zongyu Huang,
Yuxiao Chang,
Fengyi Hou,
Guangwei Liu,
Ruifu Yang,
Yujing Bi
Publication year - 2020
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.00474-20
Subject(s) - biology , hypoxia (environmental) , microbiology and biotechnology , gut flora , microorganism , organism , bacteria , immunology , ecology , oxygen , genetics , chemistry , organic chemistry
External environmental factors can cause an imbalance in intestinal flora. For people living in the extremes of a plateau climate, lack of oxygen is a primary health challenge that leads to a series of reactions. We wondered how intestinal microorganisms might change in a simulated plateau environment and what changes might occur in the host organism and intestinal microorganisms in the absence of hypoxia-related factors. In this study, mice carrying a knockout of hypoxia-inducible factor 1β ( Hif-1β ) in myeloid cells and wild-type mice were raised in a composite hypoxic chamber to simulate a plateau environment at 5,000 m of elevation for 14 days. The mice carrying the myeloid Hif-1β deletion displayed aggravated hypoxic phenotypes in comparison to and significantly greater weight loss and significantly higher cardiac index values than the wild-type group. The levels of some cytokines increased in the hypoxic environment. Analysis of 16S rRNA sequencing results showed that hypoxia had a significant effect on the gut microbiota in both wild-type and Hif-1β -deficient mice, especially on the first day. The levels of members of the Bacteroidaceae family increased continuously from day 1 to day 14 in Hif-1β deletion mice, and they represented an obviously different group of bacteria at day 14 compared with the wild-type mice. Butyrate-producing bacteria, such as Butyricicoccus , were found in wild-type mice only after 14 days in the hypoxic environment. In conclusion, hypoxia caused heart enlargement, greater weight loss, and obvious microbial imbalance in myeloid Hif-1β -deficient mice. This study revealed genetic and microecological pathways for research on mechanisms of hypoxia.