z-logo
open-access-imgOpen Access
Presence of Gastric Pepsinogen in the Trachea Is Associated with Altered Inflammation and Microbial Composition
Author(s) -
Usha Krishnan,
Harveen Singh,
Nicodemus Tedla,
Steven T. Leach,
Nadeem O. Kaakoush
Publication year - 2020
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.00455-20
Subject(s) - pepsin , respiratory system , biology , inflammation , reflux , pulmonary aspiration , stomach , gastroenterology , medicine , immunology , disease , anatomy , biochemistry , enzyme
Gastroesophageal reflux is a common gastrointestinal issue that can lead to aspiration and contribute to respiratory problems. Little is known about how reflux can alter the respiratory microenvironment. We aimed to determine if the presence of gastric pepsinogen in the trachea was associated with changes in the microbial and inflammatory microenvironment. A pediatric cohort at high risk of reflux aspiration was prospectively recruited, and the tracheal microenvironment was examined. Pepsinogen A3 (PGA3) and cytokines were measured. The microbiome (bacterial and fungal) was profiled using 16S rRNA and internal transcribed spacer 2 (ITS2) amplicon sequencing. Increased bacterial richness and an altered composition driven by an enrichment of Prevotella correlated with high PGA3 levels. Fungal richness increased with PGA3, with higher Candida relative abundances observed in a subset of samples with high PGA3 levels. Source tracking of tracheal microbial taxa against taxa from matched oral and gastric samples revealed a significantly greater contribution of oral than of gastric taxa with higher PGA3 levels. Tracheal cytokines were differentially produced when stratified according to PGA3, with higher levels of interleukin-1 (IL-1)-related cytokines and IL-8 being associated with high PGA3 levels. Network analysis across cytokine and microbiome measures identified relationships between IL-1-related proteins and microbial taxa, with the presence of respiratory issues associated with higher levels of IL-1β, IP-10, and Prevotella In conclusion, PGA3 levels in the trachea are correlated with increases in specific microbial taxa and inflammatory molecules, with an increase in oral microbes with increasing PGA3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here