
Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA Complex in Saccharomyces cerevisiae
Author(s) -
David S. McNabb,
Inês Mendes Pinto
Publication year - 2005
Publication title -
eukaryotic cell
Language(s) - English
Resource type - Journals
eISSN - 1535-9778
pISSN - 1535-9786
DOI - 10.1128/ec.4.11.1829-1839.2005
Subject(s) - biology , transcription factor , saccharomyces cerevisiae , promoter , caat box , dna binding domain , protein subunit , transcription (linguistics) , dna binding site , dna binding protein , dna , genetics , microbiology and biotechnology , gene , gene expression , linguistics , philosophy
The CCAAT-binding factor (CBF) is an evolutionarily conserved multimeric transcriptional activator in eukaryotes. InSaccharomyces cerevisiae , the CCAAT-binding factor is composed of four subunits, termed Hap2p, Hap3p, Hap4p, and Hap5p. The Hap2p/Hap3p/Hap5p heterotrimer is the DNA-binding component of the complex that binds to the consensus 5′-CCAAT-3′ sequence in the promoter of target genes. The Hap4p subunit contains the transcriptional activation domain necessary for stimulating transcription after interacting with Hap2p/Hap3p/Hap5p. In this report, we demonstrate that Hap2p, Hap3p, and Hap5p assemble via a one-step pathway requiring all three subunits simultaneously, as opposed to the mammalian CCAAT-binding factor which has been shown to assemble via a two-step pathway with CBF-A (Hap3p homolog) and CBF-C (Hap5p homolog) forming a stable dimer before CBF-B (Hap2p homolog) can interact. We have also found that the interaction of Hap4p with Hap2p/Hap3p/Hap5p requires DNA binding as a prerequisite. To further understand the protein-protein and protein-DNA interactions of this transcription factor, we identified the minimal domain of Hap4p necessary for interaction with the Hap2p/Hap3p/Hap5p-DNA complex, and we demonstrate that this domain is sufficient to complement the respiratory deficiency of ahap4Δ mutant and activate transcription when fused with the VP16 activation domain. These studies provide a further understanding of the assembly of the yeast CCAAT-binding factor at target promoters and raise a number of questions concerning the protein-protein and protein-DNA interactions of this multisubunit transcription factor.