z-logo
open-access-imgOpen Access
Cross Kingdom Functional Conservation of the Core Universally Conserved Threonylcarbamoyladenosine tRNA Synthesis Enzymes
Author(s) -
Patrick C. Thiaville,
Basma El Yacoubi,
Ludovic Perrochia,
Arnaud Hecker,
Magali Prigent,
Jennifer J. Thiaville,
Patrick Forterre,
Olivier Namy,
Tamara Basta,
Valérie de CrécyLagard
Publication year - 2014
Publication title -
eukaryotic cell
Language(s) - English
Resource type - Journals
eISSN - 1535-9778
pISSN - 1535-9786
DOI - 10.1128/ec.00147-14
Subject(s) - complementation , transfer rna , cytoplasm , mitochondrion , saccharomyces cerevisiae , biology , biochemistry , mutant , microbiology and biotechnology , yeast , rna , gene
Threonylcarbamoyladenosine (t(6)A) is a universal modification located in the anticodon stem-loop of tRNAs. In yeast, both cytoplasmic and mitochondrial tRNAs are modified. The cytoplasmic t(6)A synthesis pathway was elucidated and requires Sua5p, Kae1p, and four other KEOPS complex proteins. Recent in vitro work suggested that the mitochondrial t(6)A machinery of Saccharomyces cerevisiae is composed of only two proteins, Sua5p and Qri7p, a member of the Kae1p/TsaD family (L. C. K. Wan et al., Nucleic Acids Res. 41:6332-6346, 2013, http://dx.doi.org/10.1093/nar/gkt322). Sua5p catalyzes the first step leading to the threonyl-carbamoyl-AMP intermediate (TC-AMP), while Qri7 transfers the threonyl-carbamoyl moiety from TC-AMP to tRNA to form t(6)A. Qri7p localizes to the mitochondria, but Sua5p was reported to be cytoplasmic. We show that Sua5p is targeted to both the cytoplasm and the mitochondria through the use of alternative start sites. The import of Sua5p into the mitochondria is required for this organelle to be functional, since the TC-AMP intermediate produced by Sua5p in the cytoplasm is not transported into the mitochondria in sufficient amounts. This minimal t(6)A pathway was characterized in vitro and, for the first time, in vivo by heterologous complementation studies in Escherichia coli. The data revealed a potential for TC-AMP channeling in the t(6)A pathway, as the coexpression of Qri7p and Sua5p is required to complement the essentiality of the E. coli tsaD mutant. Our results firmly established that Qri7p and Sua5p constitute the mitochondrial pathway for the biosynthesis of t(6)A and bring additional advancement in our understanding of the reaction mechanism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom