
Birefringence and DNA Condensation of Liquid Crystalline Chromosomes
Author(s) -
M.H. Chow,
Kosmos T.H. Yan,
Michael J. Bennett,
Joseph T.Y. Wong
Publication year - 2010
Publication title -
eukaryotic cell
Language(s) - English
Resource type - Journals
eISSN - 1535-9778
pISSN - 1535-9786
DOI - 10.1128/ec.00026-10
Subject(s) - dinoflagellate , genome , dna , birefringence , ultrastructure , biology , anisotropy , transmission electron microscopy , biophysics , chromosome , evolutionary biology , liquid crystal , genome size , materials science , crystallography , genetics , nanotechnology , optics , chemistry , anatomy , physics , gene , botany , optoelectronics
DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes-up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material.