
An Improved Whole-Blood Gamma Interferon Assay Based on the CFP21-MPT64 Fusion Protein
Author(s) -
Rao Fu,
Chun Wang,
Chunwei Shi,
Mengji Lu,
Zheng-Ming Fang,
Jia Lu,
Fang Wang,
XueGong Fan
Publication year - 2009
Publication title -
clinical and vaccine immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.649
H-Index - 77
eISSN - 1556-6811
pISSN - 1556-679X
DOI - 10.1128/cvi.00486-08
Subject(s) - tuberculin , mycobacterium tuberculosis , latent tuberculosis , fusion protein , tuberculosis , medicine , antigen , interferon gamma , immunology , recombinant dna , population , biology , immune system , pathology , biochemistry , environmental health , gene
Differentiation of latent tuberculosis infection (LTBI) from a healthy, unexposed population plays a vital role in the strategy of controlling and eliminating tuberculosis (TB). Both CFP21 and MPT64, antigens encoded by the RD2 region which are restricted in theMycobacterium tuberculosis complex, are TB-specific diagnostic candidate antigens. In this study, we designed a fusion protein by linking both CFP21 and MPT64 with a 15-amino-acid peptide, (G4 S1 )3 , and overexpressed the fusion protein inEscherichia coli . A new whole-blood gamma interferon assay based on the recombinant fusion protein, CFP21-MPT64 (rCM-WBIA), was developed and compared with the tuberculin skin test (TST) for screening of LTBI in household contacts of patients with sputum-positive TB. rCM-WBIA had a slightly higher sensitivity (66.7%; 24/36 contacts) than that of the TST (61.1%; 22/36 contacts) for household contacts. We found that rCM-WBIA had a very high sensitivity (90.9%) and specificity (71.4%) for LTBI detection compared with TST. The overall agreement between rCM-WBIA and TST was 83.3% (k = 0.64); rCM-WBIA positivity was associated with a larger TST induration. These results suggest that rCM-WBIA, based on the recombinant fusion protein CFP21-MPT64, is a promising alternative diagnostic tool for detection of LTBI.