
Engineering of a Human Vaginal Lactobacillus Strain for Surface Expression of Two-Domain CD4 Molecules
Author(s) -
Xiaowen Liu,
Laurel A. Lagenaur,
Peter P. Lee,
Qiang Xu
Publication year - 2008
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.00104-08
Subject(s) - strain (injury) , lactobacillus , domain (mathematical analysis) , microbiology and biotechnology , biology , expression (computer science) , computational biology , bacteria , chemistry , computer science , genetics , mathematics , mathematical analysis , anatomy , programming language
Women are at significant risk of heterosexually transmitted human immunodeficiency virus (HIV) infection, with the mucosal epithelium of the cervix and vagina serving as a major portal of entry. The cervicovaginal mucosa naturally harbors dynamic microflora composed predominantly of lactobacilli, which may be genetically modified to serve as a more efficient protective barrier against the heterosexual transmission of HIV. We selected a vaginal strain ofLactobacillus ,L. jensenii 1153, for genetic modification to display surface-anchored anti-HIV proteins. Genomic sequencing analyses revealed thatL. jensenii 1153 encodes several unique high-molecular-weight cell wall-anchored proteins with a C-terminal cell wall sorting LPQTG motif. In this report, we employed these proteins to express a surface-anchored two-domain CD4 (2D CD4) molecule inL. jensenii 1153. Our studies indicated that the C-terminal cell wall sorting signal LPQTG motif alone is insufficient to drive the surface expression of heterologous proteins, and the display of surface-anchored 2D CD4 molecules required native sequences of a defined length upstream of the unique C-terminal LPQTG cell wall sorting signal and the positively charged C terminus in aLactobacillus -based expression system. The modifiedL. jensenii strain displayed 2D CD4 molecules that were uniformly distributed on bacterial surfaces. The surface-anchored 2D CD4 molecule was recognized by a conformation-dependent anti-CD4 antibody, suggesting that the expressed proteins adopted a native conformation. The establishment of thisLactobacillus -based surface expression system, with potential broad applicability, represents a major step toward developing an inexpensive yet durable approach to topical microbicides for the mitigation of heterosexual transmission of HIV and other mucosally transmitted viral pathogens.