z-logo
open-access-imgOpen Access
Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae
Author(s) -
Masahiro Endo,
Kazutoh Takesako,
Itaru Kato,
Hiroaki Yamaguchi
Publication year - 1997
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.41.3.672
Subject(s) - depsipeptide , saccharomyces cerevisiae , biology , microbiology and biotechnology , mechanism of action , cell , cell wall , fungicide , programmed cell death , population , cell cycle , biochemistry , yeast , in vitro , apoptosis , botany , demography , sociology
Aureobasidin A, an antifungal antibiotic inhibiting a wide range of pathogenic fungi, is lethal for growing cells of susceptible fungi. We did cytological studies on the mechanism of its fungicidal action against Saccharomyces cerevisiae. When cultures were treated with 5.0 micrograms of aureobasidin A per ml, the numbers of viable cells started to decrease after 2 to 3 h of incubation, and most cells had lost viability after 5 to 6 h. When cell death in the treated cultures began, amino acids released by the cells could be detected, indicating disruption of the cell membrane. The proportion of cells with a single small bud or two or more buds increased as the population of viable cells decreased. Most such cells had the DNA content of cells in the G2 phase of the cell cycle, suggesting that the drug inhibited some cellular process involved in normal bud growth but did not affect DNA replication. Disruption of actin assembly was found in many cells treated for 2 to 3 h, as was chitin delocalization. The results suggest that aureobasidin A has a previously unknown mechanism of fungicidal action toward S. cerevisiae. It causes aberrant actin assembly, inhibiting the normal budding process and leading to cell death, probably through destruction of membrane integrity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom