z-logo
open-access-imgOpen Access
Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus
Author(s) -
Richard J. Wallace,
A Meier,
Barbara A. Brown,
Y Zhang,
Peter Sander,
G O Onyi,
E C Böttger
Publication year - 1996
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.40.7.1676
Subject(s) - 23s ribosomal rna , clarithromycin , mycobacterium abscessus , mycobacterium chelonae , microbiology and biotechnology , point mutation , biology , mycobacterium , ribosomal rna , antibacterial agent , antibiotics , gene , mutation , genetics , bacteria , rna , ribosome
Resistance to clarithromycin among isolates of Mycobacterium chelonae and M. abscessus was observed in 18 of 800 (2.3%) patients tested between 1990 and 1995. Patients whose isolates were resistant had either disseminated disease or chronic lung disease, and the resistant isolates were recovered after clarithromycin monotherapy. Sequencing of the gene coding for the 23S rRNA peptidyltransferase region revealed a point mutation involving adenine at position 2058 (38%) or adenine at position 2059 (62%) in 20 of 20 relapse isolates from the first 13 patients identified. By pulsed-field gel electrophoresis or random amplified polymorphic DNA PCR, initial and relapse isolates were shown to have identical DNA patterns. M. chelonae and M. abscessus isolates were found to have only a single chromosomal copy of the rRNA operon, thus making them susceptible to single-step mutations. Thus, clarithromycin resistance in these species of rapidly growing mycobacteria relates to a point mutation in the gene coding for 23S rRNA and occurs in limited clinical situations, but was identified in almost 5% of isolates tested in 1995.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom