z-logo
open-access-imgOpen Access
Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium
Author(s) -
Margaret Lai,
D. R. Kirsch
Publication year - 1996
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.40.7.1645
Subject(s) - glycopeptide , bacitracin , enterococcus faecium , antibiotics , vancomycin , glycopeptide antibiotic , microbiology and biotechnology , gene cluster , biology , antibacterial agent , enterococcus , gene , bacteria , biochemistry , genetics , staphylococcus aureus
The induction of vancomycin resistance in enterococci containing the vanA gene cluster is thought to be controlled by a two-component sensor-response regulator system encoded by vanR and vanS. Eight inducing compounds were identified by screening a panel of more than 6,800 antibiotics and synthetic compounds including the three tested glycopeptides (vancomycin, avoparcin, and ristocetin), two other cell wall biosynthesis inhibitors (moenomycin and bacitracin), two cyclic peptide antibiotics (antibiotic AO341 beta and polymyxin B), and a macrocyclic lactone antibiotic (moxidectin). Induction activity by structurally unrelated antibiotics suggests that the induction signal is not a structural feature of vancomycin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom