z-logo
open-access-imgOpen Access
Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli
Author(s) -
Philip E. Brandish,
Kenichi Kimura,
M Inukai,
Robert Southgate,
John T. Lonsdale,
Timothy D. H. Bugg
Publication year - 1996
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.40.7.1640
Subject(s) - pentapeptide repeat , tunicamycin , non competitive inhibition , biochemistry , translocase , escherichia coli , chemistry , substrate (aquarium) , enzyme , biology , stereochemistry , peptide , ecology , chromosomal translocation , unfolded protein response , endoplasmic reticulum , gene
Using a continuous fluorescence-based enzyme assay, we have characterized the antibacterial agents tumicamycin and liposidomycin B as inhibitors of solubilized Escherichia coli phospho-N-acetylmuramyl-pentapeptide translocase. Tunicamycin exhibited reversible inhibition (Ki = 0.55 +/- 0.1 microM) which was noncompetitive with respect to the lipid acceptor substrate and competitive with respect to the fluorescent substrate analog, dansyl-UDPMurNAc-pentapeptide. Liposidomycin B exhibited slow-binding inhibition (Ki = 80 +/- 15 nM) which was competitive with respect to the lipid acceptor substrate and noncompetitive with respect to dansyl-UDPMurNAc-pentapeptide. These results provide insight into the molecular mechanisms of action of these two classes of nucleoside antibiotics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom