Open Access
In vitro activity of the benzoxazinorifamycin KRM-1648 against drug-susceptible and multidrug-resistant tubercle bacilli
Author(s) -
Julieta Luna-Herrera,
M. Janga Reddy,
P. R. J. Gangadharam
Publication year - 1995
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.39.2.440
Subject(s) - microgram , microbiology and biotechnology , bacilli , mycobacterium tuberculosis , antibiotics , multiple drug resistance , biology , in vitro , tuberculosis , bacteria , medicine , biochemistry , genetics , pathology
We investigated the activity of benzoxazinorifamycin (KRM-1648) against several drug-susceptible and multidrug-resistant strains of tubercle bacilli. Since KRM-1648 is a rifamycin derivative, we included some strains of Mycobacterium tuberculosis resistant to rifampin (RIF) among the multidrug-resistant strains. For RIF-susceptible strains, the MIC of KRM-1648 was much lower than that of RIF (MICs of KRM-1648 and RIF at which 90% of strains are inhibited, < or = 0.015 and < or = 0.25 micrograms/ml, respectively). The MBC of KRM-1648 (range, 0.007 to 0.03 microgram/ml) was also much lower than that of RIF (range, 0.5 to 1.0 microgram/ml). Postantibiotic effect studies with KRM-1648 showed a rapid reduction in the CFU counts with an exposure of 24 h or more, and its sterilizing effect was maintained even up to 21 days thereafter. Parallel postantibiotic effect studies with RIF showed a less significant effect with a faster recovery of growth, and RIF failed to sterilize the organisms even after 72 h of exposure. KRM-1648 at 0.125 and 0.25 microgram/ml caused complete inhibition of intracellular growth of M. tuberculosis in J774 A.1 macrophages after 48 h of exposure. After a similar exposure time RIF at a concentration of 0.25 microgram/ml caused complete inhibition of growth, but a concentration of 0.125 microgram/ml caused only a 50% reduction in growth compared with that of controls at day 7. With 24 h of pulsed exposure of the intracellular organisms to 0.25 micrograms of the drugs per ml, KRM-1648 caused complete inhibition of intracellular growth, while RIF caused only moderate inhibition of intracellular growth. These findings suggest that KRM-1648 is a potentially useful drug for the treatment of tuberculosis.